6. Nonparametric techniques
Motivation

Problem:
how to decide on a suitable model
(e.g. which type of Gaussian)

Idea:
just use the original data
(lazy learning)
Idea 1. Each data point represents a piece of probability

\[P(x) \]

\[x_2 \quad x_1 \quad x_3 \]

a Parzen Window Method
Idea 2:
ignore probabilities just measure distance to training data

- Consider two class problem

k-nearest neighbor classifier
Idea 2:
ignore probabilities just measure distance to training data

- Consider two class problem

k-nearest neighbor classifier
6.1. Density Estimation
Goal

• Determine probability density $P(\bar{x})$

• Given: training data $\bar{x}_1, \bar{x}_2, ... , \bar{x}_n$

• Consider region \mathcal{R}
Estimate probability P inside a region

- Probability of x being in \mathbb{R}
 \[P = \int_{\mathbb{R}} P(\vec{x})d\vec{x} \]

- Suppose k training vectors are inside \mathbb{R} from a total of n training vectors
 \[P \approx \frac{k}{n} \]

What's an estimate for P?
Limit of infinite number of training samples

Consider \(n \to \infty \)

Sequences \(V_n \) (volume of region) and \(k_n \)

Resulting sequence of probabilities:

\[
P_n(x) = \frac{k_n}{nV_n}
\]
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

\[k_n = \sqrt{n} \]

From: Duda+Hart: Pattern Classification
Necessary conditions for convergence

Convergence means \(P_n(x) \to P(x) \) for \(n \to \infty \)

\(P(x) \) is local property: \(V_n \to 0 \) for \(n \to \infty \)

Reliability of estimate: \(k_n \to \infty \) for \(n \to \infty \)

\(\frac{k_n}{n} \to 0 \) for \(n \to \infty \): otherwise volume cannot shrink to zero
Possible choice for k_n

$$k_n = \sqrt{n}$$

and pick V_n such that is include exactly k_n samples
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

\[k_n = \sqrt{n} \]

From: Duda+Hart: Pattern Classification
6.2. Parzen Windows
Introduction

- Each piece of training contributes it’s own bit of probability distribution
- Possible choice:
 - Cubes
 - Sphere
 - Normal distribution

For the beginning start with cubes
Volume of d-dimensional cubes

- Length of edge h_n
- Volume of cube

$$V_n = h_n^d$$

d: dimension of features space

“Home work”: volume of a d-dimensional sphere?
Introduce Window Function

- Goal: generalize and formalize method

\[
\varphi(\bar{x}) = \begin{cases}
1 & \text{if } |x^j| \leq \frac{1}{2} \text{ for all } j = 1 \ldots d \\
0 & \text{else}
\end{cases}
\]

\[x^j : j\text{-th component of } \bar{x}\]

Unit cube centered at origin

Draw a unit cube for \(d=1\) and \(d=2\)
Shift and scale the unit cube

What is the window function for a cube centered at \bar{x}_i

with length of edge h_n ???

$$\varphi\left(\frac{\bar{x} - \bar{x}_i}{h_n}\right)$$
Number of Samples at a point inside the volume V_n

Express number of data points \tilde{x}_i that contribute in terms of window functions

$$\varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right)$$

If $\varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right) = 1$ then \tilde{x}_i is in the volume V_n and hence contributes to k_n

$$k_n(x) = \sum_{i=1}^{n} \varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right)$$
Estimate of probability using section 6.1

\[P_n(x) = \frac{k_n(x)}{nV_n} \]

\[= \frac{\sum_{i=1}^{n} \varphi(\frac{\bar{x} - \bar{x}_i}{h_n})}{nV_n} \]

This formula also works for other window functions
Other Window Functions

- Normal (Gaussian) distribution (covariance matrix is unit matrix)

\[
\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^T \cdot \bar{x}}
\]

- Sphere

\[
\phi(x) = \begin{cases}
1 & \text{if } |\bar{x}| \leq 1 \\
0 & \text{else}
\end{cases}
\]
Gaussian Parzen Window 1 d

\[h_1 = 1 \quad h_1 = 0.5 \quad h_1 = 0.1 \]

\[h_n = h_1 / \sqrt{n} \]
Gaussian Parzen Window 2 d

$h_1 = 2$

$h_1 = 1$

$h_1 = 0.5$

$n = 1$

$n = 10$
Gaussian Parzen Window 2 d

Converges for all h_n
Gaussian Parzen Window $1 \ d$

- $n = 1$
- $n = 16$
- $n = 256$
- $n = \infty$
Classification example

In classifiers based on Parzen-window estimation:

- Estimate probability density using a given window
- Pick suitable h_n
- Classify using Bayes decision rule
Classification example

Small h_n

Large h_n
6.3. k_n-nearest Neighbor Estimation
Basic idea

Find k most similar cases to test sample x and claim that x is like majority of these cases.
Other names for similar/related methods

- Instance-Based Methods (IBM), or Instance Based Learning (IBL)
- Memory-Based Methods (MBM),
- Case-Based Methods (CBM),
- Case-Based Reasoning (CBR),
- Memory-Based Reasoning (MBR),
- Similarity-Based Reasoning (SBR),
- Similarity-Based Methods (SBM)
Estimate probability in nearest neighbor case

\[P(x) = \frac{1}{2 \left| x - x_2 \right|} \]

\(x_1, x_2, x_3 \): training data
\(x \): point where we want probability \(P(x) \)

\[V = 2 \left| x - x_2 \right| \]
kNN-Estimation in 1 Dimension

From: Duda+Hart: Pattern Classification
Estimating the Posterior $P(\omega_i | x)$

V: volume under consideration

k: total number of samples in V

k_i: number of samples of class ω_i in V

$$k = \sum_{i=1}^{c} k_i$$

$$P_n(x, \omega_i) = \frac{k_i}{nV}$$

$$P_n(x) = \sum_{i=1}^{c} P_n(x, \omega_i) = \sum_{i=1}^{c} \frac{k_i}{nV} = \frac{k}{nV}$$

$$P_n(\omega_i | x) = \frac{P_n(x, \omega_i)}{P_n(x)} = \frac{\frac{k_i}{nV}}{\frac{k}{nV}} = \frac{k_i}{k}$$

$P_n(\omega_i | x) = \frac{k_i}{k}$
6.4. Nearest-Neighbor Rule
Voroni-Tessellation

- See white board
Voronoi Cells in 2 Dimensions

From: Duda+Hart: Pattern Classification
Decision Boundary for a nearest-neighbour classifier in a Simulation (Probability Distribution given)

From: Hastie et al.: Statistical Learning
Voronoi Cells in 3 Dimensions

From: Duda+Hart: Pattern Classification
6.5. Error of Nearest Neighbor Rule
Error of Nearest-Neighbour-Classifier (NN)

NN-Classifier:
• Can be as good as Bayes
• In worst case twice as bad

From: Duda+Hart: Pattern Classification
Error of k-Nearest-Neighbour-Classifier

From: Duda+Hart: Pattern Classification
Missclassification vs. Number of Neighbours

From: Hastie et al.: Statistical Learning
Decision Boundary for a nearest-neighbour classifier in a Simulation (Probability Distribution given)

From: Hastie et al.: Statistical Learning
Decision Boundary for a k-nearest-neighbour classifier in a Simulation (Probability Distribution given)

$k=15$

From: Hastie et al.: Statistical Learning
Decision Boundaries of Bayes Classifier for the known Probabilities

From: Hastie et al.: Statistical Learning
Other Popular distance functions

L_α distance from 0:

$$D(X, 0)^\alpha = \sum_{i=1}^{d} |X_i|^\alpha$$

Manhattan distance or L_1 norm:

$$D(X, Y) = \sum_{i=1}^{d} |X_i - Y_i|$$

Euclidean distance or L_2 norm:

$$D(X, Y)^2 = \sum_{i=1}^{d} |X_i - Y_i|^2$$

$\alpha = 1/2, 1, 2, \text{ and } 10$
Summary

- k-Nearest Neighbour classifier
- Voronoi tessellation