Set Partitioning

Dr. John McDonough

Spoken Language Systems
Saarland University

June 4, 2009
In this lecture, we consider how to determine the *intersection* of two languages.

We also consider an algorithm for *set partitioning* that can also be used to minimize a weighted-finite state automaton.

Coverage: Aho, Hopcroft, Ullman (1974), Section 4.13.
Recall that we defined an equivalence relation xR_Ly for a language L when either xz and yz belong to L or both do not belong.

The *index* is the number of equivalence classes in a language L.

An equivalence relation R_L whereby xzR_Lyz follows from xR_Ly is known as right invariant.
The following statements are equivalent:

1. The set $L \subseteq \Sigma^*$ is accepted by a finite-state automaton.
2. L is the union of equivalence classes of a right invariant equivalence relation with finite index.
3. The equivalence relation can be defined as follows: xR_Ly is holds if and only if xz is in L when yz is in L. Then L has a finite index.
Consider a set S and an initial partition π of S into disjoint blocks $\{B_1, B_2, \ldots, B_p\}$.

There is also given a function f on S.

The task is to find the coarsest partition $\pi' = \{E_1, E_2, \ldots, E_q\}$ such that
1. π' is consistent with π (that is, each E_i is a subset of some B_j, and,
2. a and b in E_i implies $f(a)$ and $f(b)$ are in some E_j.

We then call π' the coarsest partition of S compatible with π and f.
Naive Solution

- Let B_i be a block.
- Examine $f(a)$ for each a in B_i.
- B_i is partitioned so that a and b are in the same block if and only if $f(a)$ and $f(b)$ are in the same block.
- This process is iterated until no further refinements are possible.
Example

- Let $S = \{1, 2, \ldots, n\}$, and let $B_1 = \{1, 2, \ldots, n-1\}$, $B_2 = \{n\}$ be the original partition.
- Define the function f on S as

$$f(i) \triangleq \begin{cases}
 i + 1, & \text{for } 1 \leq i < n \\
 n, & \text{for } i = n.
\end{cases}$$

- On the first iteration, B_1 is partitioned into $\{1, 2, \ldots, n-2\}$ and $\{n-1\}$.
- This iteration requires $n - 1$ steps because each element in B_1 must be examined.
- On the next iteration, we partition $\{1, 2, \ldots, n-2\}$ into $\{1, 2, \ldots, n-3\}$ and $\{n-2\}$.
Running Time of the Naive Solution

- A total of \(n - 2\) such iterations are required, whereby the \(i\)th iteration requires \(n - i\) steps, for a total of

\[
\sum_{i=1}^{n-2} \frac{n(n-1)}{2} - 1
\]

steps.

- The problem with the naive solution is that refining each block requires \(O(n)\) steps, even if only a single element is removed.

- We would like to develop an algorithm whereby refining a block into two subblocks requires time proportional to the smaller subblock.

- This will result in a \(O(n \log n)\) algorithm.
For each $B \subseteq S$, let $f^{-1}(B) = \{ b | f(b) \in B \}$.

The naive algorithm partitions a block B_i by the values of $f(a)$ for $a \in B_i$.

Instead, let us partition with respect to B_i those blocks B_j which contain at least one element in $f^{-1}(B_i)$ and one element not in $f^{-1}(B_i)$.

That is, each B_j is partitioned into the sets $\{ b | b \in B_j \text{ and } f(b) \in B_i \}$, and $\{ b | b \in B_j \text{ and } f(b) \notin B_i \}$.
Once we have partitioned with respect to B_i, we need not partition again with respect to B_i unless B_i is itself split.

If initially $f(b) \in B_i$ for each element $b \in B_j$, and B_i is split into B'_i and B''_i, then we can partition B_j with respect to either B'_i or B''_i.

This follows because $\{b| b \in B_i \text{ and } f(b) \in B'_i\}$ is the same as $B_i - \{b| b \in B_i \text{ and } f(b) \in B''_i\}$.
Conventional Automaton

Let define a conventional automaton without weights.

Definition (finite-state machine)

A FSM is a 5-tuple $A = (\Sigma, Q, E, i, F)$ consisting of
- an *alphabet* Σ,
- a finite set of states Q,
- a finite set of *transitions* $E \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$,
- a *initial state* $i \in Q$,
- and a set of *end states* $F \subseteq Q$.

A transition $e = (p[e], l[e], n[e]) \in E$ consists of
- a previous state $p[e] \in Q$,
- a next state $n[e] \in Q$,
- a label $l[e] \in \Sigma$,

A final state $q \in F$ may have an associated label $a \in \Sigma$.
Problem Statement

Consider a FSM with the set of states Q.

We wish to partition Q into subsets $M = \{Q_i\}$ such that for some i.

We seek the coarsest partition $\{Q_i\}$ of Q, which is by definition the partition with fewest elements, that satisfies (1).

Let ν be a partition of Q and let f be a function mapping $Q \times \Sigma$ to Q. In the present case, f is defined implicitly through the transitions $E \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$.

For each $Q_i \in \nu$ define the sets

$$\text{symbol}(Q_i) = \{ a \in \Sigma : \exists e = (p, a, n) \in E, n \in Q_i, p \in Q \}$$
Pseudocode

Pseudocode for the partitioning algorithm is shown below:

```
00  def partition():
01    Q₀ ← Q − F
02    Q₁ ← F
03    push Q₀ on S
04    push Q₁ on S
05    n ← 1
06    while |S| > 0:
07      pop P from S
08      for a in symbol(P):
09        for Q_j such that Q_j ∩ f⁻¹(P, a) ≠ ∅ and Q_j ⊆ f⁻¹(P, a):
10          n += 1
11          Q_n ← Q_j ∩ f⁻¹(P, a)
12          Q_j ← Q_j − Q_n
13          if Q_j ∈ S:
14            push Q_n on S
15          else:
16            if |Q_n| < |Q_j|:
17              push Q_n on S
18            else:
19              push Q_j on S
```
We will say the set \(T \subseteq Q \) is \textit{safe} for \(\nu \) if for every \(B \in \nu \), either
\[
B \subseteq f^{-1}(T, a) \quad \text{or} \quad B \cap f^{-1}(T, a) = \emptyset \quad \forall \ a \in \Sigma.
\]

The key of the algorithm is the partitioning of \(Q_j \) in Lines 12–13, which ensures that there are no transitions of the form
\[
e_1 = (p_1, a, n_1) \quad \text{and} \quad e_2 = (p_2, a, n_2),
\]
where either \(p_1, p_2 \in Q_j \) or \(p_1, p_2 \in Q_n \), for which (1) does not hold.

Hence, Lines 12–13 ensure that \(P \) is safe for the resulting partition, inasmuch as if \(Q_j \cap f^{-1}(P, a) \neq \emptyset \) for some \(Q_j \), then either \(Q_j \subseteq f^{-1}(P, a) \), or else \(Q_j \) is split into two blocks in Lines 12–13, the first of which is a subset of \(f^{-1}(P, a) \), and the second of which is disjoint from that subset.

For reasons of efficiency, the smaller of \(Q_j \) and \(Q_n \) is placed on \(S \) in Lines 17–20, unless \(Q_j \) is already on \(S \), in which case \(Q_n \) is placed on \(S \) in Lines 14–15 regardless of whether or not
\[
|Q_n| < |Q_j|.
\]
Aho et al (1974) proved the following lemma. **Lemma (set partitioning):** After the algorithm in Listing ?? terminates, every block Q_i in the resulting partition ν' is safe for the partition ν'.