12. Wiener Filter
Noise Removal

- Noise is present in many situations of daily life
- Microphones will record noise and speech
- Goal:
 - Reconstruct original speech signal
Filtering of a Signal to Remove Noise

Original signal \(s[k] \) through a filter \(h[k] \) results in a filtered signal \(\tilde{s}[k] \). The input includes noise \(n[k] \).
Idea of Wiener Filter

• Minimize Euclidian distance between the original signal and the filtered signal

\[e^2 = E[k] - s[k] \]

\[E \] expectation value of the stochastic process

Nach: Norbert Wiener (November 26, 1894 – March 18, 1964)
Solution in the Time Domain

• See black board
Wiener Hopf Equation

\[h[i] * (\varphi_{ss}[i] + \varphi_{nn}[i]) = \varphi_{ss}[i] \]
Toeplitz Matrix and Levinson-Durbin Recursion

- Toeplitz matrix
- Levinson (Durbin) recursion
Symmetry of Impulse Response

As

\[
\begin{pmatrix}
\varphi_{ss}[-N] \\
\vdots \\
\varphi_{ss}[N]
\end{pmatrix}
=
\begin{pmatrix}
\varphi_{ss}[N] \\
\vdots \\
\varphi_{ss}[-N]
\end{pmatrix}
\]

and the Topelitz matrix is symmetric

\[
\Rightarrow
\begin{pmatrix}
h[-N] \\
\vdots \\
h[N]
\end{pmatrix}
=
\begin{pmatrix}
h[N] \\
\vdots \\
h[-N]
\end{pmatrix}
\]

\[h[i] = h[-i]\]

symmetry of the Wiener filter
Frequency Solution of Wiener-Hopf Equation

\[H(\omega) \Phi_{ss}(\omega) + \Phi_{nn}(\omega) = \Phi_{ss}(\omega) \]

\[H(\omega) = \frac{\Phi_{ss}(\omega)}{\Phi_{ss}(\omega) + \Phi_{nn}(\omega)} \]

Can you explain what it does to specific frequencies?
Wiener Filter in Frequency Domain

\[H(\omega) = \frac{\Phi_{ss}(\omega)}{\Phi_{ss}(\omega) + \Phi_{nn}(\omega)} \]

- Suppresses frequencies where noise is present
- Other frequencies remain unchanged
Heuristic Modification

\[H_\eta(\omega) = \left(\frac{\Phi_{ss}(\omega)}{\Phi_{ss}(\omega) + \Phi_{nn}(\omega)} \right)^\eta \]

- Tune how “strong” the filter should be
Estimating the Noise AKF

- Use pauses, where there is no signal
- Voice activity detection (VAD)
Application to Images

Original

Distorted (blurred)

Reconstructed (using Wiener-F)

Wiener filtering

A signal, which is transmitted from the sender to the receiver is often impaired by various forms of distortions. Wiener filtering is a method to recover the original signal as close as possible from the received signal. Consider the following situation: An original signal $s(t)$ is transmitted through an information channel (cable, wireless channel, storage medium). The received signal $x(t)$ is impaired by two different effects. Firstly, the channel may not have a perfect "delta-function" response so that the original signal $s(t)$ is convolved with some known impulse response $g(t)$ to give a smeared signal $v(t) = g(t) * s(t)$. Secondly, noise $n(t)$ may be added to $v(t)$ to give finally the signal $x(t) = v(t) + n(t)$ at the receiver. Our task is to find the optimal filter (or Wiener filter) $h(t)$ which, when applied to the signal $x(t)$ produces a signal $y(t)$ that is as close as possible to the uncorrupted signal $s(t)$. In other words we want to estimate the true signal $s(t)$.

The frequency response of the Wiener filter is given by:

$$H(jw) = \frac{\phi_{ss}(jw) G^*(jw)}{\phi_{ss}(jw) |G(jw)|^2 + \phi_{nn}(jw)}$$

(see the textbook at page 461ff.)
\[H(jw) = \frac{\phi_{ss}(jw) | G(jw) |^2 + \phi_{nn}(jw)}{\phi_{ss}(jw) | G(jw) |^2} \]
Wiener Filter

I am interested in collaboration.

Download Now: .m

Rating: ★★★☆☆ 10 reviews Review this file

Code Metrics: Full report

What is this?

Author: Esfandiar Zavarehei

Summary: Wiener Filter for Noisy Speech Enhancement

MATLAB Release: R14SP1

Description: Wiener Filter for Noisy Speech Enhancement, implemented as proposed by Scalart 1996. Uses a decision directed method to track the a priori SNR. Note that the first 0.25 sec of the signal is used to model the noise, that is, it is assumed that speech starts after that 0.25 sec

File Details

- **File Id:** 7673
- **Size:** 6 KB
- **Submitted:** 2005-05-17
- **Average rating:** 4.0
- **# of reviews:** 10
- **Downloads:** 7195
Summary

- Wiener filter
 - Minimize quadratic distance to original signal
- Wiener-Hopf equation
- Time domain solution
- Frequency domains solution