Exercise 1

In this exercise, you will implement a simple k-Nearest Neighbour classifier!

(1P) Subtask 1.1
To measure distances for a kNN classifier, it sometimes is useful to try other norms than the euclidian norm. Therefore implement a function \(pnorm(x, p) \) with \(x \in \mathbb{R}^n \) and \(p \geq 1 \):

\[
\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}
\]

(1P) Subtask 1.2
For visualisation purposes, write a function \(cplot(T, M) \), which plots the given datasets. The matrices have the following form:

- The first column is \(\in \mathbb{N}^n \) (\(n \) being the number of samples) and contains labels
- The second and third columns represent the samples’ \(x \) and \(y \) values and are \(\in [0, 12]^n \)

Use can use Matlab’s \(\text{scatter}(...) \) and \(\text{axis}(...) \) functions. Your implementation is to plot the given datasets using 1 color per label. Make sure you plot the matrix \(M \) before \(T \), as \(M \) will be the dataset and \(T \) the training set.

(4P) Subtask 1.3
Now implement a function:

```matlab
function V = classify(T, M, k, p)
```

which classifies the gives samples \(M \in \mathbb{R}^{n \times f} \) with \(n \) being the number of samples, \(f \) the length of the feature vectors. \(V \in \mathbb{N}^n \) is a Vector containing the labeling your classifier produced. \(k \) is the number of neighbours to check for and \(p \) the parameter for the norm function. \(T \) is the already labeled training set and its structure is as described in 1.2.

(2P) Subtask 1.4
Read in the file \(train1.dat \) (\(importdata(...) \)). Now generate a matrix \(M \in [0, 12]^{2500 \times 2} \) and classify it using your classifier. Use the euclidian distance and generate 4 plots (using \(cplot(...) \)) in a single window for \(k = 1, 3, 5, 9 \).

What can you observe especially for \(k = 9 \)?

Questions: alikanso91@hotmail.com and dhhjx880713@163.com
(2P) Subtask 1.5

Read in the files `wine.train` and `wine.test`. The test set `wine.test` is labeled correctly already such that the number of errors can be measured. Remove the labels, classify the data and determine the classification error. Try to find good values for k and p experimentally.

Questions: alikanso91@hotmail.com and dhhjx880713@163.com