Exercise 1

You will learn some basic Matlab-functions in this exercise.

(1P) Subtask 1.1
Write a Matlab-function that can display two images at the same time.¹

(2P) Subtask 1.2
Reimplement the following MatLab-function:

```matlab
function [M] = randmat(n,m, p)
```

The function should generate a random matrix \(M \in \{1;0\}^{n \times m} \) with \(n,m \in \mathbb{N} \). \(p \in [0;1] \) is the probability how often a 1 occur in \(M \). If \(p = 1 \) then all the elements in \(M \) are 1 and vice versa all elements are 0 for \(p = 0 \).

(2P) Subtask 1.3
Implement a filter that manipulates the pixels of a gray-scale image in the following way:

\[
\begin{align*}
tmp(x,y) &= \begin{cases}
255 & S(x,y) == 1 \\
img(x,y) & \text{else}
\end{cases} \\
out(x,y) &= \begin{cases}
0 & P(x,y) == 1 \\
tmp(x,y) & \text{else}
\end{cases}
\end{align*}
\]

(1)

(2)

\(S \) and \(P \) are random matrices with parameters \(s \) and \(p \) that you can produce with the function of subtask 1.2. Could you imagine where to use this filter?

¹Have a look in the matlab-help: “imread(‘filename’);”, “imshow(image)”, “subplot”.

Questions: alikanso91@hotmail.com and dhhjx880713@163.com

Write a Matlab-script, that verifies your implementation. Make some experiments with different sets of parameters s, p. You find two images on our webpage.

Exercise 2

This Exercise is about speaker localisation. Using the *Generalized Cross Correlation* method we can estimate the time delay of arrival (TDOA) τ_{ij} between two microphones i and j

$$\phi_{x_i,x_j}(\tau_{ij}) = \sum_{k=0}^{L-1} \frac{X_i(k)X_j(k)^*}{|X_i(k)||X_j(k)|} \exp(j2\pi k\tau/L) \quad (3)$$

where X_i is the spectrum of the signal x at the microphone i and L is the fft size. Based on Eq.(3) the time delay of arrival can be obtained as follows

$$\hat{\tau}_{ij} = \arg \max_{\phi_{x_i,x_j}(\tau_{ij})} \quad (4)$$

On the homepage you can find a paper about this approach. Implement in Matlab a function

```matlab
function tau_{ij} = getGCC(sig_i, sig_j)
```

which computes the TDOA between two microphones using Eq.(3) and Eq.(4).

Implement a test script, that provides the TDOA’s for all possible microphone pairs of a multi-channel signal based on the method `getGCC`. For testing you can download the 8-channel audio signal from the homepage.

Make a good documentaion about your experiments and evaluate your results. Try to estimate - if possible - the speaker direction.

2*Microdisplacement: 2cm; Matlab-function to readin audio-signals: “auread()”

Questions: alikanso91@hotmail.com and dhhjx880713@163.com