8. Musical Genre Classification
Goal

• Learn about
 – Task of musical genre classification
 – Feature extraction
 – K-nearest neighbor classifier

Lecture based on:

“Musical Genre Classification of Audio Signals”

By George Tzanetakis and Perry Cook

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 5, JULY 2002
Motivation

• Provide means
 • to access music by verbal description
 • to access music by example
 • to structure music data bases
Audio Classification

Classical

Country

Rock
Audio Classification Hierarchy

- Music
 - Classical
 - Country
 - Disco
 - HipHop
 - Jazz
 - Rock
 - Blues
 - Reggae
 - Pop
 - Metal
 - Choir
 - Orchestra
 - Piano
 - String Quartet
 - BigBand
 - Cool
 - Fusion
 - Piano Quartet
 - Swing

- Speech
 - Male
 - Female
 - Sports
Automatic Musical Genre Classification

• Issues:
 • Genre boundaries are
 • Fuzzy
 • Arguable
Classification Procedure

Raw audio → Digitally encode → Extract features

Training

Build classifier models

Decide class

Raw audio → Digitally encode → Extract features

Classification
Extract Features

• Mel-scaled cepstral coefficients (MFCCs)
• Musical surface features
• Rhythm Features
• Others…
Musical surface features

• Represents characteristics of music
 • Texture
 • Timbre
 • Instrumentation
• Statistics over spectral distribution
 • Centroid
 • Rolloff
 • Flux
 • Zero Crossings
 • Low Energy
Calculating Surface Features

Signal \rightarrow Divide into windows \rightarrow FFT over window \rightarrow Calculate feature for window \rightarrow Calculate mean and std. dev. over windows

$\sum \ldots$
Surface Features: Centroid

- Centroid: Measures spectral brightness

\[C_t = \frac{\sum_{f=1}^{N} f M_t[f]}{\sum_{f=1}^{N} M_t[f]} \]

- Measures amount of high frequency components

\[M[f] = \text{magnitude of FFT at frequency bin } f \text{ over } N \text{ bins} \]
Surface Features

- **Rolloff: Spectral Shape**

Determine R such that:

$$\sum_{f=1}^{R} M[f] = 0.85 \sum_{f=1}^{N} M[f]$$
Surface Features

• Flux: Spectral change

\[F_t = \| N_t[f] - N_{t-1}[f] \| \]

Where, \(N_t[f] \) is the per frame normalized magnitude.
Surface Features

- **Zero Crossings:**

\[
Z_t = \frac{1}{2} \sum_{n=t-N/2}^{t+N/2} |\text{sign}(x[n]) - \text{sign}(x[n-1])|
\]

- **sign:** 1 is argument is positive, 0 else
- **Provides a measure of noisiness of the signal**
Rhythm Features

Discrete Wavelet Transform Octave Frequency Bands

Full Wave Rectification
Low Pass Filtering
Downsampling
Mean Removal
Envelope Extraction

Envelope Extraction
Envelope Extraction
Envelope Extraction

Auto-correlation
Multiple Peak Picking
Beat Histogram
Examples of Beat Histograms
Experimental Setup

• Songs collected from radio, CDs and Web
• 50 samples for each class, 30 sec. Long
• 15 genres
• Features: MFCC, surface and rhythm features
• Classifiers: GMM and kNN
• 10 fold cross validation

See blackboard
Nearest Neighbor Classifier

• Idea:
 • For each feature vector of the test data:
 • Find the nearest feature vector of the training data
 • Assign to the test data the class label of the vector found in the previous step

• Advantage:
 • Very simple (no training required)

• Disadvantage:
 • Very expensive (complexity linear in amount of training data)
Voronoi Cells in 2 Dimensions

From: Duda+Hart: Pattern Classification
Voronoi Cells in 3 Dimensions

From: Duda+Hart: Pattern Classification
Decision Boundary for a nearest-neighbour classifier in a Simulation
(Probability Distribution given)

From: Hastie et al.: Statistical Learning
k-Nearest-Neighbour-Classifier

From: Duda+Hart: Pattern Classification
Error of k-Nearest-Neighbour-Classifier

From: Duda+Hart: Pattern Classification
Decision Boundary for a k-nearest-neighbour classifier in a Simulation
(Probability Distribution given)

$k=17$

From: Hastie et al.: Statistical Learning
Missclassification vs. Number of Neighbours

From: Hastie et al.: Statistical Learning
Classification Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Genres (10)</th>
<th>Classical (4)</th>
<th>Jazz (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>10</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>RT GS</td>
<td>44 ± 2</td>
<td>61 ± 3</td>
<td>53 ± 4</td>
</tr>
<tr>
<td>GS</td>
<td>59 ± 4</td>
<td>77 ± 6</td>
<td>61 ± 8</td>
</tr>
<tr>
<td>GMM (2)</td>
<td>60 ± 4</td>
<td>81 ± 5</td>
<td>66 ± 7</td>
</tr>
<tr>
<td>GMM (3)</td>
<td>61 ± 4</td>
<td>88 ± 4</td>
<td>68 ± 7</td>
</tr>
<tr>
<td>GMM (4)</td>
<td>61 ± 4</td>
<td>88 ± 5</td>
<td>62 ± 6</td>
</tr>
<tr>
<td>GMM (5)</td>
<td>61 ± 4</td>
<td>88 ± 5</td>
<td>59 ± 6</td>
</tr>
<tr>
<td>KNN (1)</td>
<td>59 ± 4</td>
<td>77 ± 7</td>
<td>57 ± 6</td>
</tr>
<tr>
<td>KNN (3)</td>
<td>60 ± 4</td>
<td>78 ± 6</td>
<td>58 ± 7</td>
</tr>
<tr>
<td>KNN (5)</td>
<td>56 ± 3</td>
<td>70 ± 6</td>
<td>56 ± 6</td>
</tr>
</tbody>
</table>
Confusion Matrix

<table>
<thead>
<tr>
<th>Actual Genre</th>
<th>Classic</th>
<th>Country</th>
<th>Disco</th>
<th>Hiphop</th>
<th>Jazz</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>86</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Country</td>
<td>1</td>
<td>57</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Disco</td>
<td>0</td>
<td>6</td>
<td>55</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Hiphop</td>
<td>0</td>
<td>15</td>
<td>28</td>
<td>90</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Jazz</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>Rock</td>
<td>6</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>27</td>
<td>48</td>
</tr>
</tbody>
</table>
Confusion Matrix within Classical

<table>
<thead>
<tr>
<th></th>
<th>Choral</th>
<th>Orchestral</th>
<th>Piano</th>
<th>String-Quar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choral</td>
<td>99</td>
<td>10</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Orchestral</td>
<td>0</td>
<td>53</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Piano</td>
<td>1</td>
<td>20</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>String-Quar.</td>
<td>0</td>
<td>17</td>
<td>7</td>
<td>80</td>
</tr>
</tbody>
</table>
Achtung: das Resultat bedeutet nicht, dass der Rhythmus das wichtigste Merkmal ist!
Summary

• Audio retrieval is a relatively new field
• Various different types of features
 • MFCC
 • Surface
 • Rhythm
• kNN-Classifier