Exercise 1

You will implement some basic parts of JPEG-Coding in this exercise. On our website is an image that you can use.

(2P) Subtask 1.1
Implement the function `colortrans`, that transforms a given RGB-image to a YCbCr-image and vice versa.

\[
\begin{bmatrix}
Y \\
Cb \\
Cr
\end{bmatrix}
= \begin{bmatrix}
0 & 128 & 128 \\
0, 299 & -0, 168736 & -0, 331264 & 0, 5 \\
0, 5 & -0, 418688 & -0, 081312 & 0
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

(2P) Subtask 1.2
Implement a function `quanmat` which quantizes a matrix \(M \in \mathbb{R}^{n \times m} \) with the given quantization matrix \(Q \in \mathbb{R}^{n \times m} \).

\[
Q = \begin{bmatrix}
8 & 16 & 19 & 22 & 26 & 27 & 29 & 34 \\
16 & 16 & 22 & 24 & 27 & 29 & 34 & 37 \\
19 & 22 & 26 & 27 & 29 & 34 & 34 & 38 \\
22 & 22 & 26 & 27 & 29 & 34 & 37 & 40 \\
22 & 26 & 27 & 29 & 32 & 35 & 40 & 48 \\
26 & 27 & 29 & 32 & 35 & 40 & 48 & 58 \\
26 & 27 & 29 & 36 & 38 & 46 & 56 & 69 \\
27 & 29 & 35 & 46 & 46 & 56 & 69 & 83 \\
\end{bmatrix}
\]

Hint for subtask 1.3 and 1.4:
It is common to implement the general function `submatproc`. This function splits the given matrix \(I \in \mathbb{R}^{n \times m} \) into submatrices with size \(b \in \mathbb{N}^2 \). Apply the delivered function \(\text{fun} : \mathbb{R}^b \rightarrow \mathbb{R}^b \) to each of the submatrices. Finally, rebuild a matrix \(O \in \mathbb{R}^{n \times m} \) out of all the submatrices.

\[
\text{function } [O] = \text{submatproc}(I,b,\text{fun})
\]

(2P) Subtask 1.3
Compute \(Y' \) out of the brightness control \(Y \) using the JPEG-method. You should use a block-size of \(8 \times 8 \) Pixel and the quantization of subtask 1.2. Compare \(Y \) and \(Y' \).

How can we use this method for compression? Do we lose quality?

\[
^1\text{You can use “@” to deliver functions as reference; Matlab-Help: “function_handle”}
\]

\[
^2\text{You can use the Matlab functionen dct2 and idct2.}
\]
(2P) Subtask 1.4
Implement a function for downsampling the \(CbCr \)-channels by a factor of \(w \) in vertical and horizontal direction. Show the influence of \(w \) with the help of images.
How can we use this method for compression? Do we lose quality?

(1P) Subtask 1.5
Rebuild a \(RGB \)-image out of all the preceding results. Compare this image with the original one.

(3P) Exercise 2
A cyclic correlation can be easily computed via a discret Fourier transform. Proof by hand that:
\[
corr(x, y) = \text{DFT}^{-1}(\text{DFT}(x) \cdot \text{DFT}^*(y))
\] (3)

Script 3
For this lecture is a german script available. A small groupe have a look on it. You can join this group and contribute articles, error corrections or figures.
Chapter “1.1.4” is about image-compression and it describe the JPEG-Method briefly. A lot of figures and formulas are missing.
If you have a good mind to take active part in writing a script, then feel free and send an email to Your tutor.