Exercise 1

You will learn some basic Matlab-functions in this exercise.

(1P) Subtask 1.1
Write a Matlab-function that can display two images at the same time.

(2P) Subtask 1.2
Reimplement the following Matlab-function:

```matlab
function [M] = randmat(n, m, p)
```

The function should generate a random matrix \(M \in \{1; 0\}^{n \times m} \) with \(n, m \in \mathbb{N} \). \(p \in [0; 1] \) is the probability how often a 1 occur in \(M \). If \(p = 1 \) then all the elements in \(M \) are 1 and vice versa all elements are 0 for \(p = 0 \).

(2P) Subtask 1.3
Implement a filter that manipulates the pixels of a gray-scale image in the following way:

\[
tmp(x, y) = \begin{cases}
255 & S(x, y) == 1 \\
img(x, y) & \text{else}
\end{cases}
\]
(1)

\[
out(x, y) = \begin{cases}
0 & P(x, y) == 1 \\
tmp(x, y) & \text{else}
\end{cases}
\]
(2)

\(S \) and \(P \) are random matrices with parameters \(s \) and \(p \) that you can produce with the function of subtask 1.2. Could you imagine where to use this filter?

\footnote{Have a look in the matlab-help: \texttt{imread(’filename’);}, \texttt{”imshow(image)”}, \texttt{”subplot”}.}

Questions: Munir.Georges@lsv.uni-saarland.de 1 www.lsv.uni-saarland.de
(1P) subtask 1.4
Write a Matlab-script, that verifies your implementation. Make some experiments with different sets of parameters \(s, p \). You find two images on our webpage.

(6P) Exercise 2
A convolution can be computed in an efficient way due to the convolution theorem of the fourier transformation. Imagine you have a stereo signal \(y(n) := (l(n), r(n)) \) with length \(N_1 \) and impulse response of \(N_2 \). The convolution can be computed in a fast way by representing the two real sequences via a complex one \(z(n) = l(n) + ir(n) \). Describe the method for the fast convolution with the aid of equations, pseudo code or Matlab code.