6. Feature Extraction from Speech
Overview

- Learn about the most established feature extraction from speech
- **Mel Frequency Cepstral Coefficients: MFCC**
Quantization

• Uniform quantization:
 – 10-12 bit are sufficient to code speech

• Improvement:
 – Use distribution of amplitude values
 – μ-law:
 \[
 f_n^{(\mu)} = f_{\text{max}} \text{sgn}(f_n) \frac{\log(1 + \mu |f_n|)}{\log(1 + \mu)} \quad \mu \approx 200
 \]
 \[
 \propto \log(1 + \mu |f_n|)
 \]
Features in the Time Domain: Short-time Energy

Definition: \(E^{(n)} = \sum_{m=0}^{M-1} |f_{m+n}|^2 \)

Example:

From: Schukat-Talamazzini
Pre-emphasis

- Correct for filtering of the lips
- Iterative scheme:
 \[f_n' = f_n - \alpha f_{n-1} \]
- Typical values: \(\alpha = 0.95 \)
From Signal to Spectrum: Fourier Transform

• Definition

\[F^{(m)}(e^{i\omega}) = \sum_{n=-\infty}^{\infty} f_n w_{m-n} e^{-i\omega n} \]

\(w_n \): window function
\(\omega \): frequency times \(2\pi \)
Example: putting a rectangular on a speech signal

Frame shift typ.: 10ms

Frame width typ.: 25ms
A Simple Example for Fourier Transform

→ Maple script
Fourier Transform in Practice

- Use “Fast Fourier Transform” (FFT)
- Requires number of samples N to be power of 2 (e.g. N=256)
- Code available
- Complexity \(N \log(N) \)
Established Window Functions

- Use to get sharper peaks
- Rectangular window: \(w_n^R = 1 \)
- Generalized Hamming Window:
 \[
 w_n^H = (1 - \alpha) - \alpha \cos\left(\frac{2\pi n}{N - 1}\right)
 \]
 (\(\alpha = 0.54 \) : standard Hamming window)
- Gauss window:
 \[
 w_n^G = e^{-0.5\left(\frac{n-N/2}{3N/2}\right)^2}
 \]
- Parabola window:
 \[
 w_n^P = 4 \frac{n}{N} \left(1 - \frac{n}{N}\right)
 \]
 \(n=0...N-1 \)

- Window functions vanish outside this interval
Rewrite of Fourier Transform

• Definition:

\[F^{(m)}(e^{i\omega}) = \sum_{n=-\infty}^{\infty} f_n w_{m-n} e^{-i\omega n} \]

• Window functions vanish outside the interval \(n=0...N-1 \)

• Define \(\omega = 2\pi v \frac{1}{N} \)

\[F^{(m)}_v = \sum_{n=0}^{N-1} f_{m-n} w_n e^{-i2\pi v n \frac{n}{N}} \]

Note: for further processing, we take the absolute value of the Fourier Transform
Example for ö

Short time spectrum

Smoothed spectrum

Frequency (Hz)
Spectrogram

- Calculate a spectrum for any point in time
- Code the local intensity: color/grey scale
"To return to the main menu, press the star key".
Use praat to generate a Spectrogram

- **Praat**: software for doing phonetics by computer
- **Written by**: Paul Boersma and David Weenink
- **Quite powerful**: spectrograms, formants, pitch, …
- **Download**: http://www.fon.hum.uva.nl/praat/
Use praat to generate a Spectrogram
Smoothing the Spectrogram: Filterbank

• Idea: imitate ear
 • Do an average over neighboring frequencies
 • Scale the frequencies according to the mel or the Bark scale

→ Reduction from 256 Fourier coefficients to 24 outputs of a filterbank
Example of a Filterbank
Filterbank

• Spacing of center frequency:
 – According to mel scale:
 \[Mel(f) = 2595 \log_{10} \left(1 + \frac{f}{700}\right) \]

• Low frequency cut off:
 – E.g. 300 Hz (for telephone speech)

• High frequency cut off:
 – E.g. 3400 Hz (for telephone speech)

• Different settings for e.g. head set connected PC
Vocal Tract Length Normalization

- Idea:
 - Average position of formants depends on length of vocal tract
 - \rightarrow varying position of frequencies of filter bank
 - A kind of speaker adaptation
Vocal Tract Length Normalization: Frequency Warping
Training the Warping Factor

- Issue: how to scale for a specific speaker
- Slow version:
 - Use 11 different warping factors
 - Do speech recognition with all of them
 - Pick the best one
- Oldest approach
- Not very efficient
- Improvement: 10% less recognition errors
What does a telephone do to your voice?
From Spectrum to Cepstrum

- **Name**: swapping of letters
- **Idea**: separate out the convolutional contribution
- **Useful as** a preparation to remove channel distortions (e.g. telephone)
- **Cepstral mean subtraction (CMS)**
Definition “Cepstrum”

Signal → Spectrum → Cepstrum

- Fourier Transform
- log
- Discrete Cosine Transform
Math for Cepstrum

- e_n: original signal (e.g. excitation from glotis)
- f_n: measured signal
- h_n: impulse response of channel (e.g. vocal tract)

\[f_n = \sum_{n=-\infty}^{\infty} h_{m-n} e_n \]
Math for Cepstrum

- Apply Fourier transform F

$$F\{f_n\} = F\{\sum_{n=-\infty}^{\infty} h_{m-n} e_n\}$$

- Use convolution theorem

$$F\{f_n\} = F\{h_n\} F\{e_n\}$$
Math for Cepstrum

• Apply logarithm

\[\log(\mathcal{F}\{f_n\}) = \log(\mathcal{F}\{h_n\}) + \log(\mathcal{F}\{e_n\}) \]

• Impulse response and excitation now separated
Cepstrum: do discrete cosine transform after log

- Discrete cosine transform:

\[
c_0^{(m)} = \sqrt{2/N} \sum_{\nu=0}^{N/2-1} \log(F_{\nu}^{(m)})
\]

\[
c_q^{(m)} = \sqrt{4/N} \sum_{\nu=0}^{N/2-1} \log(F_{\nu}^{(m)}) \cos\left(\frac{\pi q(2\nu + 1)}{N}\right)
\]
Dynamic Features

- Spectrum captures local aspects of speech
- Window size 25 ms
- Capture slow changes in spectrum
- Other name: delta features
Dynamic Features

- Capture slow changes in spectrum
Dynamic Features

- Calculate first and second derivatives
- Naïve approach to first derivative
 - Continuous function
 \[
 \frac{df(t)}{dt} \approx \frac{f(t + \Delta t) - f(t - \Delta t)}{2 \Delta t}
 \]
 - Time discrete sampling
 \[
 \frac{df(t_m)}{dt} \approx \frac{f(t_{m+\Delta}) - f(t_{m-\Delta})}{2 \Delta + 1}
 \]
Difference/Regression

i-th component of feature vector

Line through extremes

Regression curve

m-3 m-2 m-1 m m+1 m+2 m+3 Sample
Regression Formula

\[
\frac{df(t)}{dt} = \frac{\sum_{i=1}^{M} i(f(t_{m+i}) - f(t_{m-i}))}{\sum_{i=1}^{M} i^2}
\]

• Check \(M=1 \)

How could you derive this formula?
Dynamic Features

• Invented by Furui 1981
• Standard in any modern ASR system

• Alternative:
 • Linear mapping of neighboring feature vectors

• Issue:
 • Dimension of feature vectors
Linear Discriminant Analysis

- Method to decrease size of feature vector
- Maximize separability of class regions
- Linear transform of feature vectors
- More: later in the lecture
Complete Pipeline for Mel-Frequency Cepstral Coefficients (MFCC)

Signal

Sampling
Pre-emphasis
Windowing
Fast Fourier Transform
Absolute Value
Mel-scaled Filterbank
log
Discrete Cosine Transform

Feature Vectors

Dynamic Features (1. and 2. derivative)
Linear Discriminant Analysis

Typical values:

- 16 kHz; 16 Bit quantization
- Window size: 25 ms
- 512 Fourier Coefficients
- 24 filterbank values
- keep only 20 lowest cepstra
- 60 dimensional vector
Alternative Feature Extraction Methods

- **LP-Cepstrum (LP=linear prediction)**
 - Derived from speech coding
 - No longer much in use
- **PLP (=Perceptual linear prediction)**
 - For certain applications popular
 - Claim: mode noise robust than MFCCs
 - Main change: use $|.|^{1/3}$ instead of log in MFCC
Summary

• Classical “plain vanilla” feature extraction: Mel-Frequency Cepstral Coefficients
• Main deficiency: not very noise robust
• Used in
 • Speech Recognition
 • Speaker Recognition
 • Music genre classification